# The IBS concept: system optimization and beam characterization

F. Cichocki, M. Merino, E. Ahedo

Equipo de Propulsión Espacial y Plasmas (EP2)

Universidad Carlos III de Madrid (UC3M)
Nov. 1-2, 2018



Follow us on:



GitHub: ep2lab



Twitter: @ep2lab



## The Ion Beam Shpherd (IBS) concept

- > Debris is threatening future space exploitation
  - □ No action taken → Exponential increase of in-orbit collisions and debris
- Efforts must then be put in:
  - □ Post Mission Disposal regulation (**PMD**)
  - Active Debris Removal (ADR) for largest objects
- The **IBS** is a promising ADR technique, featuring:
  - □ Impulse Transfer Thruster (ITT) for momentum transfer to debris
  - □ Impulse Compensation Thruster (ICT) for formation flying
  - □ **No docking** with uncooperative debris
  - One of the 2 thrusters used for S/C navigation
- ➤ Use of EP enhances the efficiency of the IBS:
  - □ Small propellant consumption

Space debris population prediction. J.C.Liou, Acta Astronautica 66 (2010) 648 -- 653







## The IBS-EP subsystem optimization (1)

> EU-FP7 LEOSWEEP Project (2013-16): Definition & optimization of IBS-IOD

mission

| MISSION REQUIREMENTS        | VALUES    |
|-----------------------------|-----------|
| Target Upper Stage Mass     | ~1500 kg  |
| Orbit type                  | Polar LEO |
| De-orbiting altitude change | 300 km    |
| De-orbiting phase duration  | 170 days  |



ightharpoonup Momentum transfer efficiency  $\eta_B$  was characterized in terms of ITT beam voltage





## The IBS-EP subsystem optimization (2)

- > The electric **subsystem optimization** has been carried out in terms of:
  - □ Acceleration beam voltages of both ITT and ICT
- > The **EPS figures of merit** to be optimized are:
  - Overall power consumption
  - Overall dedicated subsystem mass
- > The ITT beam voltage affects:
  - Momentum transfer efficiency → requested ITT and ICT thrust levels
- > The ICT and ICT beam voltages affect:
  - □ Total requested power level (including PPU efficiencies)
- Results:
  - $\square$  2-D maps of EPS figures of merit in  $V_{beam\ ITT}$ - $V_{beam\ ICT}$  plane



## The IBS-EP Subsystem Optimization (3)

OPTIMAL ITT BEAM VOLTAGE IS QUITE HIGHER THAN THAT OF THE ICT !!!

Overall Power (kW)





## **Electric Propulsion Subsystem Optimization (4)**

Propellant plus dedicated solar array mass (kg)





### Simulation of S/C-plume-debris interaction (1)

- ➤ With the optimal ITT-ICT operating voltages, the interaction physics between S/C-plume and debris object was carried out with EP2PLUS:
  - □ 3D Extensible Parallel Plasma PLUme Simulator
- FLUID ELECTRONS + PIC IONS

- Important assessments:
  - □ Bias voltage of the space debris with respect to the spacecraft
  - Backsputtering contamination flux at the S/C

#### **ELECTRIC CIRCUIT** SIMULATION GEOMETRY current from plasma independent node dependent node background plasma ions injection orbital velocity vector ICT ITTneutralizer utralizer $I_{W,1}$ $I_{\mathrm{W,2}}$ 1 m ICT ITTsub-circuit 2 $| \bullet I_2 |$ $7 \mathrm{m}$ $0.8 \; \mathrm{m}$ 11 m sub-circuit 1 reference

### Simulation of S/C-plume-debris interaction (2)

#### Considered effects:

- Xe, Xe+, Xe++emission in ITT, ICT& neutralizer
- CEX collisions
- Ambient O ions
- Non-neutrality around S/C
- Mild electron (polytropic) cooling
- Target debris charges 10
  V positive wrt S/C:
  - Independent of the e-cooling rate

## **ELECTRIC POTENTIAL (V) AT DIFFERENT CROSS SECTIONS**





### Simulation of S/C-plume-debris interaction (3)

#### **CHARACTERIZATION OF SPUTTERED PARTICLES (ALUMINUM)**





 $\triangleright$  Backsputtering flux at S/C  $\sim$  10<sup>16</sup> m<sup>-2</sup>s<sup>-1</sup>: 3 $\mu$ m contamination layer throughout the mission for surfaces oriented towards the target  $\rightarrow$  possible degradation of S/C sensors



## EP2PLUS' work in progress: deformed meshes

- > EP2PLUS can consider deformed meshes to represent non-rectangular objects
  - Current 2D deformation algorithm changes a square into a circle
- Application to more realistic IBS problen
  - Debris shape has a strong influence on distribution of back-sputtering fluence







- > New application: Plasma discharges in cylindrical chambers
  - □ Cross-validation of 2D cylindrical codes
  - □ Inclusion of 3D effects in them



## **EP2PLUS work in progress: Magnetic field effects**

- > EP2PLUS is implementing moderate B-field effects in electron fluid model
  - ☐ Goal: Assessment of B-effects on plume shape and expansion
    - Strong B-field requires a B-field aligned mesh
- First application: Uniform, oblique magnetic field (e.g. geomagnetic field)
  - □ For axial **B**: the plume cross-section compresses downstream
  - □ For oblique **B**:
    - $\diamond$  Plume cross section deforms, compressing in the  $u_i \times B$  direction
    - No plume deflection: electric self-force cancels magnetic one at the



Density changes at downstream cross section with respect to unmagnetized case



## **Bibliography**

- M. Ruiz, I. Urdampilleta, C. Bombardelli, E. Ahedo, M. Merino, and F. Cichocki, The FP7 LEOSWEEP project: Improving low Earth orbit security with enhanced electric propulsion, Space Propulsion Conference, paper 2014-2980908, Cologne, Germany, May 19-22, 2014.
- F. Cichocki, M. Merino, E. Ahedo, M. Smirnova, A. Mingo, M. Dobkevicius, **Electric propulsion subsystem optimization for "Ion Beam Shepherd" missions**, Journal of Propulsion and Power, Vol. 33, N. 2, pages 370-378, 2017
- F. Cichocki, A. Domínguez, M. Merino and E. Ahedo, **Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects**, Plasma Sources Sciences and Technologies, Vol. 26, N.12, pages 125008, 2017
- □ F. Cichocki, M. Merino and E. Ahedo, **Spacecraft-plasma-debris interaction in an ion beam shepherd mission**, Acta Astronautica, Vol. 146, pages 216-227, 2018
- J. M. Catalán, **Structured 3D mesh deformation algorithms for plasma thrusters simulations**, MSc thesis, University Carlos III de Madrid, 2018



## Thank you! Questions?





email: ep2@uc3m.es

web::ep2.uc3m.es





Twitter: @ep2lab

